An Eclipse Based Environment to Define and Execute Processes with Application to the Reverse Engineering*

Andrea De Lucia¹, Fausto Fasano¹, Michele Risi¹, and Giuseppe Scanniello²

Dipartimento di Matematica e Informatica, University of Salemo¹,
Dipartimento di Matematica e Informatica, University of Basilicata²

*Supported by the project METAMORPHOS under grant PRIN-2006-2006098097
Outline

• Motivation
 – Software maintenance
 – Reverse engineering tools
 – Workflow management technologies

• The framework
 – Reusing software components

• Case study

• Conclusion and future work
Motivation

- Successful software system is forced to change over time
- Changes are needed:
 - to meet new user requirements,
 - to adapt software to interact with external entities, e.g., people, organizations, and artificial systems
 - to correct faults
 - to improve performances and quality
 - to migrate towards new technologies

The first Lehman’s law [1980]:
“A program that is used in a real world environment necessarily must change or become progressively less useful in that environment”.
Motivation

- **Software Maintenance**
 - The maintenance is the largest and the most expensive activity
 - It starts when the software product is delivered and ends when the product is no longer available for use.
 - The cost is due to technical and managerial problems
 - It increases in case methodology to anticipate the changes have been not used and the documentation is lacking
Reverse engineering

• To reduce the maintenance effort reverse engineering tools can be used
 – They support the comprehension of existing software systems, abstracting higher level models from the code (the major source of information)
• Different freeware and commercial tools are available
• All-in-one reverse engineering and comprehension tools often lack
 – A high effort is required to design and develop a specific tool
• To meet this concern tools have been proposed in the past
 – They are generally based on some domain specific or scripting language, thus requiring specific competences
 – Many of them enable the reuse of existing reverse engineering components so the const consists of integrating these components into a reverse engineering process
The visual framework

• Workflow management technologies could represent a viable solution to
 – define and execute reverse engineering and comprehension processes
 – integrate different tools and components

• We propose a visual framework
 – Eclipse plug-in
 – UML activity diagrams
 – Predefined or newly developed components can be reused
 • Implemented with traditional programming languages and software environments for data analysis (i.e., MATLAB or R)
 – The process can be partially executed
 • In case the early activities of the process have been previously executed the software engineer can decide to skip them and run however the process.
Defining a process

- Activities are arranged
- Components are associated to each activity
- Great emphasis has been provided on the reuse of software components implemented using
 - R
 - MATLAB
- Rserve is used to integrate R components
- JMatLink engine is used to integrate MATLAB components
- Visual sentences are encoded in an XML file
Associating existing components

- An easy to use mechanism is provided
- Components implemented in R, MATLAB, and Java ready to be used are available
 - Wrappers implemented once for all
- Figure shows how an existing R component is associated to an activity

```xml
<matrix id="RComputingMatrices" class-name="cddTools.MatrixGeneratorR" class-path="">
  <parametri-generali>
    <p-g name="IP" value="127.0.0.1" />
    <p-g name="PORT" value="6311" />
    <p-g name="PROC" value="mergeMatrixFromFile('D:\case\src','c:\out.txt')" />
    <p-g name="LIB" value="source('lsa_procedure.r')" />
  </parametri-generali>
</matrix>
```
Case study

• The framework has been assessed on different processes
 – Many previously defined before implementing the framework

• In this paper:
 – A process for the software remodularization of existing objects oriented software systems
 – A process to identify similar web pages
Software remodularization

- ComputingDissimilarity
 - Input: source code
 - Output: dissimilarity matrix
- ComputingDistance
 - Input: source code
 - Output: distance matrix
- CombiningMatrices
 - Input: distance and dissimilarity matrices
 - Output: combined matrix
- GroupingSimilarClasses
 - Input: combined matrix and number of clusters to identify (the k-means clustering algorithm has been used)
 - Output: groups of classes

- jEdit 4.3
 - a text editor for programmers
- JHotDraw 5.1
 - a two-dimensional graphics framework
Grouping similar pages

- Page Transformation
 - Input: static and dynamic pages of a web application
 - Output: strings encoding page structures

- Computing Distance Matrix
 - Input: strings
 - Output: distance matrix (computed using the Levenshtein algorithm)

- Clustering Web Pages
 - Input: distance matrix
 - Output: groups of similar pages (the Winner-Takes-All clustering algorithm has been used)

Conclusion

• A framework to define and execute processes to reverse engineering and comprehend existing software systems has been proposed
 – It has been developed as Eclipse plug-in
 – It integrates a visual environment (implemented using Graphical Editing Framework) where processes are specified in terms of UML activity diagrams
 – The definition of the process is completed associating newly developed or predefined software components

• The framework has been assessed on some case studies.
 – On processes to comprehend existing web applications and to remodularize legacy information systems
Future directions

• Future work will be devoted to further experiment the environment on different processes

• We plan to empirically validate the usefulness of the plug-in
 – Controlled experiments with students, academic researchers, and professional programmers
 – Actual industrial case studies with professional programmers

• Usability studies will be also performed
Thanks!!!

Contact information:
Giuseppe Scanniello
Dipartimento di Matematica e Informatica
Università della Basilicata
Viale Dell'Ateneo n°10,
Macchia Romana
85100, Potenza, ITALY
Email: giuseppe.scanniello@unibas.it
gscanniello@unisa.it